Effective counting for discrete lattice orbits in the plane via Eisenstein series
نویسندگان
چکیده
We prove effective bounds on the rate in quadratic growth asymptotics for orbit of a non-uniform lattice SL(2,R), acting linearly plane. This gives an error bound count saddle connection holonomies, some Veech surfaces. The proof uses Eisenstein series and relies earlier work many authors (notably Selberg). Our results improve counting sectors smooth star shaped domains.
منابع مشابه
a time-series analysis of the demand for life insurance in iran
با توجه به تجزیه و تحلیل داده ها ما دریافتیم که سطح درامد و تعداد نمایندگیها باتقاضای بیمه عمر رابطه مستقیم دارند و نرخ بهره و بار تکفل با تقاضای بیمه عمر رابطه عکس دارند
Eisenstein Series*
group GC defined over Q whose connected component G 0 Q has no rational character. It is also necessary to suppose that the centralizer of a maximal Q split torus of G0C meets every component of GC. The reduction theory of Borel applies, with trivial modifications, to G; it will be convenient to assume that Γ has a fundamental set with only one cusp. Fix a minimal parabolic subgroup P 0 C defin...
متن کاملThe simplest Eisenstein series
We explain some essential aspects of the simplest Eisenstein series for SL2(Z) on the upper half-plane H. There are many different proofs of meromorphic continuation and functional equation of the simplest Eisenstein series for Γ = SL2(Z). We will follow [Godement 1966a] rewriting of a Poisson summation argument that appeared in [Rankin 1939], if not earlier. This argument is the most elementar...
متن کاملCounting Singular Plane Curves via Hilbert Schemes
Consider the following question. Given a suitable linear series L on a smooth surface S, how many curves in L have a given analytic or topological type of singularity? By “suitable” linear series with respect to a type of singularity, we mean that there are finitely many curves with the singularity in the linear series and their codimension is maximal. Our approach to this question is to expres...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: L'enseignement mathématique
سال: 2021
ISSN: ['0013-8584', '2309-4672']
DOI: https://doi.org/10.4171/lem/66-3/4-1